
Comparison of Software Sound Synthesis Tools

Lance Putnam

5/10/2007



Software Sound Synthesis Tools

In general, one can find two different types of software sound synthesis
(SSS) tools: applications and libraries. Applications provide a user inter-
face (graphical, textual, or both), programmability through scripting, and
an open ”plugin” architecture for synthesis algorithms. Applications gen-
erally have a quick learning curve. Applications are sometimes referred to
as rapid prototyping tools meaning that they allow one to be very expres-
sive with the tool in a short order of time, but usually at the expense of
computational inefficiency. To improve efficiency, synthesis algorithms are
written in lower-level languages, such as C or C++, as plugins and loaded
dynamically into the program at run-time. From a user’s perspective, ap-
plications are much easier to learn and use because they have a high-level
interface oriented towards rapid development in a specific domain. From
a developer’s perspective, applications are very difficult to maintain due to
dependencies on shifting operating systems and complications in building
a graphical/textual user interface. Some existing SSS applications include
SuperCollider, Pd, Max/MSP, and ChucK.

Libraries can be described as a library of independent modules written in
a computationally efficient language that are programmatically connected to
perform a specific task. To use a library effectively, one must be well versed
in one of these languages. Libraries are more atomic in the sense that they
make no assumptions about how a user will piece components together to
solve a specific problem. In this way, they offer maximal flexibility. Also,
since libraries are usually written in a more general-purpose and widely used
language, they can be uplifted into many different situations, such as writ-
ing plugins and special-purpose tools. This makes them more usable from
a developer’s perspective. Unfortunately, the atomization of functionality
in libraries demands more effort in creating higher-level structures. This
adversely effects its usability factor from a user perspective. Existing SSS
libraries include STK, CSL, Aura, CLAM, and SndObj.

An important consideration to make when choosing an interface for SSS
is the programming language(s) used. Many SSS tools are bilingual in their
approach having both a language for performing DSP and another for high-
level expressive control. C and C++ are almost universally accepted as the
languages of choice for performing DSP. This is due to their high degrees of
efficiency and flexibility and, in turn, widespread usage and active community
following. The choice of a higher-level control language, however, is a much

1



more complicated issue. A language rift emerges that is largely a result of
personal style and multiple ways of approaching and thinking about a com-
plex problem. The two options are to choose an existing scripting language
or to write a new one. Surprisingly, the latter is the most popular choice.
This may be largely due to a lack of widely accepted scripting languages that
can effectively solve synthesis control problems. Some relatively newer lan-
guages, such as Python, Ruby, and Lua, are rising to top in this regard and
should be kept in consideration. However, a more general problem is that
programming languages tend to lose their generality as more specific tasks
need to be accomplished through it. There seem to be more fundamental
issues regarding control of synthesis algorithms that need to be solved first.

There are five issues that come to mind when considering the overall qual-
ity of a SSS tool: ease of use, flexibility, scalability, platform independence,
and ease of maintenance. These aspects were chosen since they seem to ex-
hibit a trade-off characteristic. Ease of use concerns the user effort required
to do something expressive with the tool. Flexibility is a measure of the
expressive potential of a tool, i.e. the degree to which it can solve generic
problems. Scalability is a measure of how well the tool works in increas-
ingly complex and demanding systems. Ease of maintenance has to do with
how easy it is for a developer to fix problems in the source code and have
those changes reflected in the tool. Platform independence rates how much
platform-specific code the tool depends on and how readily it can be used on
several platforms. This closely impacts the maintainability of the tool, since
changes in OSs may directly impact its source code. Table 1 compares the
maximum potential of each of the five attributes between SSS applications
and libraries.

Table 1: Tool Attribute Potentials

Potential Application Library

Ease of Use High Low
Flexibility Medium High
Scalability Medium High

Ease of Maintenance Low High
Platform Independence Low High

Of course it would be desirable to have a tool that has high potential in

2



all areas. Libraries have high potential in all areas except ease of use which
is very low. Conversely, applications have high ease of use, but suffer in all
other areas, especially maintenance and platform independence. It is hard
to say whether the added benefits of having a nice textual and/or graphical
user interface is worth the sacrifices made with other aspects of the tool.
For the time, it seems logical to work with a library and try to make it as
easy as possible to use. One promising development in software engineering,
Design Patterns, has partially risen out of a need to create simpler interfaces
to software. The next section will present and compare several existing SSS
libraries.

Summary of Sound Synthesis Libraries

The following libraries were chosen for analysis because they are all cross-
platform, open-source and are documented. Aura is the only exception, but
its design philosophy is worth looking at.

Aura is a software platform made to facilitate interactive systems that
combine audio, graphics, and sensors (Dannenberg 2002, 2004). Aura was
designed on the principles of generality across modes of data and scalability
to run either as a single-processor or distributed system. An Aura system
is divided into three separately threaded zones for graphics, control, and
audio. Each zone handles inter-zone communication, memory management,
and event scheduling. Objects communicate by putting messages on a FIFO
queue of the zone where the object resides. Message passing is implemented
using remote procedure calls and therefore is scalable to run over a network.
Aura synthesis patches can be constructed and modified at run-time. Using
the ”instrument editor” synthesis graphs can be constructed graphically using
the common boxes and wires approach. Patches can generate C++ code
which can then be compiled and linked into the application at run-time.

CLAM is a combined C++ library and rapid prototyping tool for audio
and music processing (Amatriain 2002, Arumi 2005). CLAM is meant to be
comprehensive and includes signal processing classes, audio and MIDI I/O,
XML serialization, algorithm and data visualization and interaction, and
multithreading handling. There are three main layers of the infrastructure:
a library (Repository), processing nodes (Processing objects), and processing

3



graph (Network). The Repository holds commonly encountered digital sig-
nal processing algorithms that operate on special data containers called Pro-
cessingData objects. ProcessingData objects are divided into several types
such as audio, spectrum, musical phrase, and segment. Data streams within
Processing objects are divided into sample-synchronous signals (Ports) and
asynchronous event signals (Controls). The Network is a data-flow model for
constructing directed acyclic graphs of Processing objects operating on data
streams. Several GUI components are available, using Qt and FLTK, for
building visual interfaces. CLAM also includes a graphical ”NetworkEditor”
for constructing synthesis graphs.

The CREATE Signal Library (CSL) is a general-purpose C++ soft-
ware framework for sound synthesis and digital audio signal processing (Pope
2003, 2006). CSL is designed from the ground up to be used in distributed
systems, with several CSL programs running as servers on a local-area net-
work, streaming control commands and sample buffers between them. CSL is
also designed for ”orchestra-scale” synthesis and thus has scalability in mind.
Unit generators can be connected to each others inputs in the constructor to
easily build synthesis graphs. Data is passed around through Buffer objects
which represent single- or multi-channel audio signals. Sound localization is
strongly supported with classes for simple panning, VBAP, and Ambisonics.
Wavefield synthesis is not supported, but is planned to be in the near future.

SndObj is a C++ library that comprises a series of signal processing and
control classes which can be used in a number of signal processing applica-
tions (Lazzarini, 2001). SndObj is aimed to be comprehensive in terms of
functionality for working with audio and to be modular like analogue synthe-
sizers. Objects are all derived from the same base class which knows about
the sample-rate and vector size and has buffers for input and output. A
utility class Table provides common tabulated functions, such as harmonics
series, windows, and conversions, used in sound synthesis applications.

The Synthesis ToolKit (STK) is a C++ environment for the rapid pro-
totyping of realtime synthesis and audio processing algorithms (Cook 1999).
STK was designed with ease of use, extensibility, and pedagogy in mind.
STK is unique from other similar libraries in that it is based on scalar, as op-
posed to vector, processing. This allows for arbitrary single-sample feedback

4



paths in processing graphs. Unit generators can also process sample vectors.

Comparison of Sound Synthesis Libraries

Table 2 lists what are deemed the fundamental building blocks for sound
analysis and synthesis and their availablity in each library. Unfortunately
there is no documentation available for Aura, so it has been omitted.

Table 2: Fundamental Synthesis Components

UGen CLAM CSL SndObj STK

Env (decay) x x x x
Delay (1-pole) x x
Delay (biquad) x x x
Delay (comb) x x
Delay (vari) x x x
Noise (white) x x x
Noise (pink) x
Osc (sine) x x x x
Osc (ramp) x x

Sampler x x x
Spectral (DFT) x x x
Spectral (PVoc) x x

Table 3 compares some of the features of SSS libraries.
From this comparison, it is evident that SndObj has the best support for

fundamental synthesis techniques. CSL and STK have an acceptable score
and CLAM appears to be quite lacking missing several important generators
such as delays and noise. Basic unit generators are crucial to extending the li-
brary to include higher-level synthesis techniques. The capability of working
in the time-frequency domain is also quite important. CLAM shines in this
area seemingly favoring spectral over time-domain processing. SndObj has
basic DFT and phase vocoder functionality making it acceptable. In terms
of sound localization, CSL is the clear winner with Ambisonics, VBAP, and
planned Wavefield synthesis. The other libraries only have simple panning

5



Table 3: Library Features

Feature Aura CLAM CSL SndObj STK

Fundamentals - 4/12 9/12 11/12 8/12
Spectral - Many DFT DFT, PVoc -

Localization - Pan Many Pan -
Proc. Rank - Vector Vector Vector Scalar, Vector

Graphs? Yes Yes Yes Yes No
Distributed Yes No Yes No No

techniques. STK has the most sophisticated sample processing design, fea-
turing both scalar and vector ranks. The other libraries support only vector
rank processing, but this is sufficient for most general purposes. In terms
of building synthesis graphs, CLAM has the most flexible design. CSL and
SndObj support simple ”pull” models which are suitable for many situations,
but may not necessarily scale well. As far as distributed processing, Aura
has the best design. This was one of its guiding design principles and as a
result the entire system can be distributed transparently. CSL is the only
other library that supports distributed processing. However, its model only
includes streaming sample frames and not a generalized RPC mechanism as
in Aura. There are other important aspects to consider in choosing a SSS
library such as data containers, analysis functions, and data mapping, mem-
ory, scalar, and vector operations. These were not considered at the time of
writing.

6



Bibliography

[1] Amatriain, X., Arumi, P., Ramirez, M. 2002. ”CLAM, yet another library
for audio and music processing?” Proceedings of OOPSLA 2002, Seattle,
Washington, USA.

[2] Arumi, P. and Amatriain, X. 2005. ”CLAM: an object oriented frame-
work for audio and music.” Proceedings of 3rd International Linux Audio
Conference; Karlsruhe, Germany.

[3] Cook, P. R., Scavone, G. 1999. ”The Synthesis ToolKit (STK).” Proceed-
ings of 1999 International Computer Music Conference.

[4] Dannenberg, R.B. 2002. ”Aura as a platform for distributed sensing and
control.” Symposium on Sensing and Input for Media-Centric Systems
(SIMS 02), Santa Barbara: University of California Santa Barbara Center
for Research in Electronic Art Technology, pp. 49-57.

[5] Dannenberg, R. B. 2004. ”Aura II: Making real-time systems safe for
music.” Proceedings of the 2004 Conference on New Interfaces for Musical
Expression (NIME04), Hamamatsu, Japan.

[6] Lazzarini, V. 2001. ”Sound processing with the SndObj library: An
overview.” Proceedings of the COST G-6 Conference on Digital Audio
Effects (DAFX-01), Limerick, Ireland.

[7] Pope, S. T., Ramakrishnan, C. 2003. ”The CREATE Signal Library (Siz-
zle): Design, issues, and applications.” Proceedings of 2003 International
Computer Music Conference.

[8] Pope, S. T., Amatriain, X. Putnam, L., Castellanos, J., Avery, R. 2006.
”Metamodels and design patterns in CSL4.” Proceedings of 2006 Interna-
tional Computer Music Conference, New Orleans, LA.

7


