
ACM: Digital Library: Communications of the ACM

Communications of the ACM

Volume 51, Number 8 (2008), Pages 38-44

Scaling in games and virtual
worlds

Jim Waldo

Table of Contents

● Lead-in

● Introduction

● Everything

You Know is

Wrong

● Current

Scaling

Strategies

● Changing Chip

Architectures

● Project

Darkstar

● Author

● Footnotes

Online games and virtual
worlds have familiar scaling
requirements, but don't be
fooled: Everything you know
is wrong.

I used to be like you.

I used to be a systems programmer, working on infrastructure used by banks, telecom
companies, and other engineers. I worked on operating systems. I worked on distributed
middleware. I worked on programming languages. I wrote tools. I did all of the things that
hardcore systems programmers do.

And I knew the rules. I knew that throughput was the real test of scaling. I knew that data had
to be kept consistent and durable, and that relational databases are the way to ensure atomicity,
and that loss of information is never an option. I knew that clients were getting thinner as the
layers of servers increased, and that the best client would be one that contained the least
amount of state and allowed the important computations to go on inside the computing cloud. I
knew that support for legacy code is vital to the adoption of any new technology, and that most
legacy code has yet to be written.

http://delivery.acm.org/10.1145/1380000/137871...l=GUIDE&dl=GUIDE&CFID=1371209&CFTOKEN=93348514 (1 de 8)02-Sep-08 12:11:43 PM

ACM: Digital Library: Communications of the ACM

But two years ago my world changed. I was asked to take on the technical architect position on
Project Darkstar, a distributed infrastructure targeted to the massive-multiplayer online game
and virtual-world market. At first, it seemed like a familiar system. The goal was to scale flexibly
by enabling the dynamic addition (or subtraction) of machines to match load. There was a
persistence layer and a communication layer. We also wanted to make the programming model
as simple as possible, while enabling the system to use all the power of the new generations of
multicore chips that Sun (and others) were producing. These were all problems that I had
encountered before, so how hard could these particular versions of the problems for this
particular market be? I agreed to spend a couple of months on the project, cleaning up the
architecture and making sure it was on the right track while I thought about new research topics
that I might want to tackle.

The three months have turned into two years (and counting). I've found lots of new research
challenges, but they all have to do with finding ways to make the environment for online games
and virtual worlds scale. In the process, I have been introduced to a different world of
computing, with different problems, different assumptions, and a different environment. At times
I feel like an anthropologist who has discovered a new civilization. I'm still learning about the
culture and practice of games, and it is a different world.

 Everything You Know is Wrong

To understand this new world, the first thing to realize is that it is part of the entertainment
industry. Because of this, the most important goal for a game or virtual world is that it be fun.
Everything else is secondary to this prime directive. Being fun is not an objective measure, but
the goal is to provide an immersive, all-consuming experience that rewards the player for playing
well, is easy to learn but hard to master, and will keep the player coming back again and again.

Most online games center around a story and a world, and the richness of the story and the world
has much to do with the success of the game. The design of the game centers on the story and
the gameplay. Design of the code that is used to implement the game comes quite a bit later
(and is often considered much less interesting). A producer heads the team that builds the game
or world. Members of the team include writers, artists, and musicians, as well as coders. The
group with the least influence on the game is the coders; their job is to bring the vision of others
to reality.

The computational environment for online games or virtual worlds is close to the exact inverse of
that found in most markets serviced by the hightech industry. The clients are anything but thin;
game players will be using the highest-end computing platform they can get, or a game console
that has been specially designed for the computational rigors of these games. These client
machines will have as much memory as can be jammed into the box, the latest and fastest CPU,
and a graphics subsystem that has super-computing abilities on its own. These clients will also
have considerable capacity for persistent storage, since one of the basic approaches to these
games is to put as much information as possible on the client.

The need for a heavyweight client is, in part, an outcome of the evolution of these games. Online
games have developed from standalone products, in which everything was done on the local
machines. This is more than entropy in the industry, however; keeping as much as possible on
the client allows the communication with the server to be minimized, both in the number of calls
made to the server and in the amount of information conveyed in those calls. This
communication minimization is required to meet the prime directive of fun, since it is part of the
way in which latency is minimized in these games.

Latency is the enemy of fun—and therefore the enemy of online games and virtual worlds. This is

http://delivery.acm.org/10.1145/1380000/137871...l=GUIDE&dl=GUIDE&CFID=1371209&CFTOKEN=93348514 (2 de 8)02-Sep-08 12:11:43 PM

ACM: Digital Library: Communications of the ACM

especially interesting in the case of online games, where the latency of the connection between
the client and the servers cannot be controlled. Therefore, the communication protocol needs to
be as simple as possible, and the information transmitted from the client to the server must fit
into a single packet whenever possible. Further, the server must be designed so that it is doing
very little, ensuring that whatever it is doing can be done very quickly so a response can be sent
back to the player. Some interesting tricks have been developed to mask unavoidable latency
from the player. These include techniques such as showing prerecorded clips during the loading
of a mission or showing a "best guess" immediately at the result of an action and then repairing
any differences between that guess and the actual result when the server responds.

The role of the server is twofold. The most obvious is to allow players to interact with each other
in the context of the game. This role is becoming more important and more complex as these
games and worlds become more and more elaborate. The original role of the server was to allow
players to compete with each other in the game. Now games and worlds are developing their
own societies, where players may compete but may also cooperate or simply interact in various
ways. Virtual worlds allow users to try out new personalities. Games let players cooperate to do
tasks that they would be unable to complete individually. In both, players are finding that a
major draw of the technology is using it to connect to other people.

The second role of the server is to be the arbiter of truth between the clients. Whether the client
is running on a console or on a personal computer, control rests in the hands of the player. This
means the player has access to the client program, and the competitive nature of the games
gives the player motivation to alter the client in the player's favor. Even in virtual worlds, where
there is only social competition, the desire to enhance the opportunity of the individual player
(more commonly known as "cheating") is common. This requires that the server, which is the
one component that is not in control of the players, be the arbiter of the true state of the game.
The game server is used both to discourage cheating (by making it much more difficult) and to
detect cheating (by seeing patterns of divergence between the game state reported by the client
and the game state held by the server). Peer-to-peer technologies might seem a natural fit for
the first role of the game server, but this second role means that few if any games or worlds
trust their peers enough to avoid the server component.

 Current Scaling Strategies

The use of the singular term server in the previous section represents a conceptual illusion of the
system structure that can be maintained only by the clients of the game or world. In fact, any
online game or virtual world will involve a large number of servers (or will have failed so
miserably that no one either can or wants to remember the game or world). Using multiple
servers is a basic mechanism for scaling the server component of a game to the levels that are
being seen in the online world today. World of Warcraft has reported more than five million
subscribers with hundreds of thousands active at any one time. Second Life reports usage within
an order of magnitude of World of Warcraft, and there is some evidence that sites such as
Webkinz or Club Penguin are even more popular. A single server is not able to handle such load,
no matter how efficient the representation. Even if a single server could deal with this load, such
a server would be far too expensive for the smaller loads that are encountered (sometimes by
the same games or worlds) at times of low demand (or in parts of the product's life cycle when
demand has decreased).

Having multiple servers means that part of building the game is deciding how to partition the
load over these servers. Two techniques are commonly used in both online games and virtual
worlds. Sometimes only one of the two techniques is used, sometimes both, depending on the
nature of the game or world.

The first technique is to exploit the geography of the game or world, decomposing the game into
different areas, each of which can be mapped to a hosting server. For example, an island in

http://delivery.acm.org/10.1145/1380000/137871...l=GUIDE&dl=GUIDE&CFID=1371209&CFTOKEN=93348514 (3 de 8)02-Sep-08 12:11:43 PM

ACM: Digital Library: Communications of the ACM

Second Life corresponds to a physical server running the code for the shared reality of the world.
Similarly, different areas of the World of Warcraft universe are hosted on different physical
machines. Anyone who is in the area will connect to the same server, and interactions among the
players on that server can be localized (and optimized). Actions happening in a different part of
the world are not likely to affect those in this part of the world, so the communication traffic
between servers can be kept small.

The second technique is known as sharding. A shard is a copy of a part of the game or virtual
world. Different shards reside on different servers, and players who are assigned to one shard
can interact with the world and other players in the shard, but will not see (or be able to interact
with) players or objects in other shards. Shards not only allow more players to be supported in
the world, but also permit independent explorations into the world by different sets of players.
Thus, when a new quest or mission is added to a game, it will often be replicated with multiple
shards so that more than one player (or group of players) can experience the quest or mission in
its original state.

With the possible exception of the highest end of scientific computing, no other
kind of software has ridden the advances of Moore's Law as aggressively as game

or virtual-world programs.

Although sharding and geographic decomposition allow multiple servers to be used to handle the
load on a single game or world, they do present the developer with significant challenges. By
creating noninteracting copies of parts of a world, shards isolate the players in different shards
from each other. This means that players who want to share their experience of the world or
game need to become aware of the different shards that are being offered, and arrange to be
placed in the same shard. As the number of players who want to be in the same shard increases
(some guilds, or groups of players who cooperatively play in a single game over an extended
period of time, have hundreds of members), the difficulty of coordinating placement into shards
increases and interferes with the experience of the world. While shards allow scale, they do so at
the price of player interaction.

Geographic decomposition does not limit player interaction, but does require that the designers
of the game be able to predict the size of a geographic area that will be the correct unit of
decomposition. If one geographic area becomes very popular, play on that area will slow down as
the server associated with the area is overloaded. If a geographic area is less popular than
originally predicted, computer hardware (and money) will be wasted on that section because not
enough players are there. Since the geographic decomposition is hardwired into the code of the
game or world, changing the decomposition in response to observed user behavior requires
rewriting part of the game or world itself. This takes time, can introduce bugs, and is very costly.
While this is being done, gameplay can be adversely affected. In extreme cases, this can have a
major financial impact. When World of Warcraft was introduced, the demand for the game so
outstripped the capacity that had been built into the game that subscriptions had to be closed off
for months while the code that distributed the game was rewritten.

 Changing Chip Architectures

Scaling over a set of machines is a distributed computing problem, and the game and virtual-
world programming culture has had little experience with this set of problems. This is hardly the
only place where scaling requires the game programmer to learn a new set of skills. A change in
the trend of chip design also means these programmers must learn skills they have never had to

http://delivery.acm.org/10.1145/1380000/137871...l=GUIDE&dl=GUIDE&CFID=1371209&CFTOKEN=93348514 (4 de 8)02-Sep-08 12:11:43 PM

ACM: Digital Library: Communications of the ACM

exercise before.

With the possible exception of the highest end of scientific computing, no other kind of software
has ridden the advances of Moore's Law as aggressively as game or virtual-world programs. As
chips have gotten faster, games and virtual worlds have become more realistic, more complex,
and more immersive. Serious gameplayers invest in the very best equipment that they can
obtain, and then use techniques such as overclocking to push even more performance out of
those systems.

Now, however, chip designers have decided to exploit Moore's Law in a different way. Rather
than increasing the speed of a chip, they are adding multiple cores to a chip running at the same
(or sometimes slower) clock speed. There are many good reasons for this, from simplified design
to lower power consumption and heat production, but it means that the performance of a single
program will not automatically increase when you run the program on a new chip. Overall
performance of a group of programs may increase (since they can all run in parallel) but not the
single program (unless it can be broken into multiple, cooperating threads). Games are written
as single-threaded programs, however.

In fact, games and virtual worlds (and especially the server side of these programs) should be
perfect vehicles to show the performance gains possible with multicore chips and groups of
cooperating servers. Games and virtual worlds are embarrassingly parallel, in that most of what
goes on in them is independent of the other things that are happening. Of the hundreds of
thousands of players who are active in World of Warcraft at any one time, only a very small
number will be interacting with any particular player. The same is true in Second Life and nearly
all large-scale games or worlds.

By backing the data in a persistent fashion rather than keeping it in main memory,
we gain some inherent reliability that has not been exhibited by games or worlds in

the past.

The problem is that the culture that has grown up around games and virtual worlds is not one
that understands or is overly familiar with the programming techniques that are required to
exploit the parallelism inherent in these systems. These are people who grew up on a single (PC)
machine, running a single thread. Asking them to master the intricacies of concurrent
programming or distributed systems takes them away from their concentration on the game or
world experience itself. Even when they have the desire, they don't have the time or the
experience to exploit these new technologies.

 Project Darkstar

It is for these reasons that we started Project Darkstar (http://www.projectdarkstar.com), a
research effort attempting to build a server-side infrastructure that will exploit the multithreaded,
multicore chips being produced and scaled over a large group of machines while presenting the
programmer with the illusion that he or she is developing in a single-threaded, single-machine
environment. Hiding threading and distribution is, in the general case, probably not a good idea
(see http://research.sun.com/techrep/1994/abstract-29.html for a full argument). Game and
world servers tend to follow a very restricted programming model, however, in which we believe
we can hide both concurrency and distribution.

http://delivery.acm.org/10.1145/1380000/137871...l=GUIDE&dl=GUIDE&CFID=1371209&CFTOKEN=93348514 (5 de 8)02-Sep-08 12:11:43 PM

ACM: Digital Library: Communications of the ACM

The model is a simple event-based one in which input from the client is received by the server,
which then sets off a task in response to that event. These tasks can change the state of the
world (by moving a player, changing the state of an object, or the like) and initiate
communication. The communication can be to a single client or to a group of clients that are all
subscribed to the same communication channel.

We chose this model largely because this is the way most game and virtual-world servers are
already structured. The challenge was then to keep this model and allow servers written in this
style to be scaled over multiple cores (running multiple threads) and multiple servers. We were
not trying to take existing code and allow it to run within our system. This would have made the
task much more difficult and would not have corresponded to the realities of the game and
virtual-world culture. Game and world servers are written from scratch for each game or world,
perhaps reusing some libraries but rarely, once running, being rehosted into a different
environment. Efforts to bring different platforms into the game are restricted to the client side,
where new consoles bringing in new players may be worth the effort.

Darkstar provides a container in which the server runs. The container provides interfaces to a set
of services that allow the game server to keep persistent state, establish connections with
clients, and construct publish/ subscribe channels with sets of clients. Multiple copies of the game
server code can run in multiple instances of the Darkstar container. Each copy can be written as
if it was the only one active (and, in fact, it may be the only one active for small-scale games or
worlds). Each of the servers is structured as an event loop—the main loop listens on a session
with a client that is established when the client logs in. When a message is delivered, the event
loop is called. The loop can then decode the message and determine the game or world action
that is the appropriate response. It then dispatches a task within the container.

Each of these tasks can read or change data in the world through the Darkstar data service,
communicate with the client, or send messages to groups of other game or world participants via
a channel. Under the covers, the task is wrapped in a transaction. The transaction is used to
ensure that no conflicting concurrent access to the world data will occur. If a task tries to change
data that is being changed by some other concurrent task, the data service will detect that
conflict. In that case, one of the conflicting tasks will be aborted and rescheduled; the other task
should run to completion. Thus, when the aborted task is retried, the conflict should have
disappeared and the task should run to completion.

This mechanism for concurrency control does require that all tasks access all of their data
through the Darkstar data service. This is a departure from the usual way of programming game
or world servers, where data is kept in memory to decrease latency. By using results from the
past 20 years of database research, we believe that we can keep the penalty for accessing
through a data service small by caching data in intelligent ways. We also believe that by using
the inherent parallelism in these games, we can increase the overall performance of the game as
the number of players increases, even if there is a small penalty for individual data access. Our
data store is not based on a standard SQL database since we don't need the full functionality
such databases provide. What we need is something that gives us fast access to persistently
stored objects that can be identified in simple ways. Our current implementation uses the
Berkeley Database for this, although we have abstracted our access to it to provide the
opportunity to use other persistence layers if required.

Concurrency control is not the only reason to require that all data be accessed through the data
store. By backing the data in a persistent fashion rather than keeping it in main memory, we gain
some inherent reliability that has not been exhibited by games or worlds in the past. Storing all
of the data in memory means that a server crash can cause the loss of any change in the game
or world since the last time the system was checkpointed. This can sometimes be hours of play,
which can cause considerable consternation among the customers and expensive calls to the
service lines. By keeping all data persistently, we believe we can ensure that no more than a few
seconds of game or world interaction will be lost in the case of a server crash. In the best case,

http://delivery.acm.org/10.1145/1380000/137871...l=GUIDE&dl=GUIDE&CFID=1371209&CFTOKEN=93348514 (6 de 8)02-Sep-08 12:11:43 PM

ACM: Digital Library: Communications of the ACM

such a crash won't even be noticed by the players, as the tasks that were on the server will be
transferred to another server in a fashion that is transparent to the player.

The biggest payoff for requiring that all data be kept in the data store is that it helps to make the
tasks that are generated by the response to events in the game portable. Since the data store
can be accessed by any of a cluster of machines that are running the Darkstar stack and the
game logic, there is no data that cannot be moved from machine to machine. We do the same
with the communication mechanisms, ensuring that a session or channel that is connecting the
game and some set of clients is abstracted through the Darkstar stack. This allows us to move
the task using the session or channel to another machine without affecting the semantics of the
task talking over the session or channel.

This task portability means we can dynamically balance the load on a set of machines running
the game or virtual world. Rather than splitting the game up into regions or shards at compile
time, virtual worlds or games based on the Darkstar stack can move load around the network of
server machines at runtime. While the participant might see a short increase in latency during
the move, the overall latency will be decreased after the move. By moving tasks, we not only can
balance the load on the machines involved, but also try to collocate tasks that are accessing the
same set of data or that are communicating with each other. All of these mechanisms allow us to
determine, while the game is being played, which tasks (and which users) should be placed on
the same server.

The project is in its early stages of development and deployment. It is based on an open-source
licensing model and community, so we are relying on our users to educate us about the needs of
the community that will build the games and worlds that will run on the infrastructure. The
research is part computer science and part anthropology, but each of the cultures has an
opportunity to learn much from the other.

Even at this early stage, it is clear that this is going to be a complex venture. While early
experience with the code has shown that the programming model does relieve the game or world
server programmer from thinking about threads and locking, it has also shown that there are
places where they do have to understand something about the underlying concurrency of the
system. The most obvious of these is in the design of the data structures. One of the earliest
users of our code was getting terrible performance from the system. When we looked at the
code, we discovered that a single object was written to on every task, updating a global piece of
game state. By designing the server in this way, this user effectively serialized all of the tasks
that were running in the system, making it impossible for the server to get any advantage from
the inherent parallelism in the game. Some minor redesign, breaking the single object into many
(much smaller) objects, removed this particular bottleneck, with resulting gains in overall
performance. This experience also taught us that we need to educate users of the system in the
design of independent data structures that can be accessed in parallel.

Nor has our own implementation been without some excitement. When we moved from a
multithreaded server that ran on a single machine to an implementation that runs on multiple
machines, we expected some degradation in the performance of the single-machine system. We
were delighted to find that the single-node system degradation was not nearly as large as we
thought it would be, but we found that additional machines lowered the capacity of the overall
system. When presented with these measurements, this was not all that surprising to understand
—the possibility for contention on multiple machines is greater than that on a single machine,
and discovering and recovering from such contention takes longer. We are working on removing
the choke points so that adding equipment actually adds capacity.

Measuring the performance of the system is made especially challenging by the lack of any clear
notion of what the requirements of the target servers are. Game developers are notoriously
secretive, and the notion of a characteristic load for a game or virtual world is not something that

http://delivery.acm.org/10.1145/1380000/137871...l=GUIDE&dl=GUIDE&CFID=1371209&CFTOKEN=93348514 (7 de 8)02-Sep-08 12:11:43 PM

ACM: Digital Library: Communications of the ACM

is well documented. We have some examples that have been written by the team or by people
we know in the game world, but we cannot be sure that these are accurate reflections of what is
being written by the industry. Our hope is that the open-source community that is beginning to
form around the project will aid in the production of useful performance and stress tests.

Seen in a broader light, the project has and continues to be an interesting experiment in building
levels of abstraction for the world of multithreaded, distributed systems. The problems we are
tackling are not new. Large Web-serving farms have many of the same problems with highly
variable demand. Scientific grids have similar problems of scaling over multiple machines. Search
grids have similar issues in dealing with large-scale environments solving embarrassingly but not
completely parallel problems.

What makes online games and virtual worlds interestingly different are the very different
requirements they bring to the table compared to these other domains. The interactive, low-
latency environment is very different from grids, Web services, or search. The growth from the
entertainment industry makes the engineering disciplines far different from those others, as well.
Solving these problems in this new environment is challenging, and adds to our general
knowledge of how to write software for the emerging class of multithreaded, multicore,
distributed systems.

And best of all, it's fun.

 Author

Jim Waldo is a Distinguished Engineer with Sun Microsystems Laboratories, Burlington, MA,
where he conducts research on Large-scale distributed systems.

 Footnotes

DOI: http://doi.acm.org/10.1145/1378704.1378716

©2008 ACM 0001-0782/08/0800 $5.00

Permission to make digital or hard copies of all or part of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

The Digital Library is published by the Association for Computing Machinery. Copyright © 2008
ACM, Inc.

http://delivery.acm.org/10.1145/1380000/137871...l=GUIDE&dl=GUIDE&CFID=1371209&CFTOKEN=93348514 (8 de 8)02-Sep-08 12:11:43 PM

	acm.org
	ACM: Digital Library: Communications of the ACM

